Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 35(2): 365-377, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38175933

RESUMO

The accumulation of very large ion populations in traveling wave (TW)-based Structures for Lossless ion Manipulations (SLIM) has been studied to better understand aspects of "in-SLIM" ion accumulation, and particularly its use in conjunction with ion mobility spectrometry (IMS). A linear SLIM ion path was implemented that had a "gate" for blocking and accumulating ions for arbitrary time periods. Removing the gate potential caused ions to exit, and the spatial distributions of accumulated ions examined. The ion populations for a set of peptides increased approximately linearly with increased accumulation times until space change effects became significant, after which the peptide precursor ion populations decreased due to growing space charge-related ion activation, reactions, and losses. Ion activation increased with added storage times and the TW amplitude. Lower amplitude TWs in the accumulation/storage region prevented or minimized ion losses or ion heating effects that can also lead to fragmentation. Our results supported the use of an accumulation region close to the SLIM entrance for speeding accumulation, minimizing ion heating, and avoiding ion population profiles that result in IMS peak tailing. Importantly, space charge-driven separations were observed for large populations of accumulated species and attributed to the opposing effects of space charge and the TW. In these separations, ion species form distributions or peaks, sometimes moving against the TW, and are ordered in the SLIM based on their mobilities. Only the highest mobility ions located closest to the gate in the trapped ion population (and where the highest ion densities were achieved) were significantly activated. The observed separations may offer utility for ion prefractionation of ions and increasing the dynamic range measurements, increasing the resolving power of IMS separations by decreasing peak widths for accumulated ion populations, and other purposes benefiting from separations of extremely large ion populations.


Assuntos
Espectrometria de Mobilidade Iônica , Peptídeos , Espectrometria de Mobilidade Iônica/métodos , Peptídeos/análise , Íons/química
2.
J Am Soc Mass Spectrom ; 34(12): 2849-2856, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37985653

RESUMO

Structures for lossless ion manipulations (SLIM) technology has demonstrated high resolving power ion mobility separation and flexibility to integrate complex ion manipulations into a single experimental platform. To enable IMS separations, trapping/accumulating ions inside SLIM (or in-SLIM) prior to injection of a packet for separations provides ease of operation and reduces the need for dedicated ion traps external to SLIM. To fully characterize the ion accumulation process, we have evaluated the effect of TW amplitudes, ion collection times, and storage times on the "in-SLIM" accumulation process. The study utilized a SLIM module comprising 5 distinct tracks, each with a specific ion accumulation configuration. The effect of the TW conditions on the accumulation process was investigated for a 3-peptide mixture: kemptide, angiotensin II, and neurotensin at a TW speed of 106 m/s. The effect of ion accumulation time/collection time and storage time was investigated, in addition to TW amplitude. Overall, the signal of the analyte ions increased when the ion collection time increased from 49 to 163 ms but decreased when the ion collection time increased further to 652 ms due to the space charge effects. Ion losses were observed at high TW amplitudes (e.g., 15 Vp-p and 20 Vp-p). In addition, under space charge conditions (e.g., collection times of 163 and 652 ms), the signal of the analyte ions decreased with an increase in storage times for all TW amplitudes applied to the trapping region. For ion accumulation, the data indicate that gentler TW conditions must be utilized to minimize ion losses and fragments to benefit from the "in-SLIM" accumulation process. Wider SLIM tracks provided better performance than those with narrower tracks.


Assuntos
Neurotensina , Hormônios Peptídicos , Íons/química , Angiotensina II
3.
J Am Soc Mass Spectrom ; 33(5): 783-792, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437008

RESUMO

We evaluated the effect of four different waveform profiles (Square, Sine, Triangle, and asymmetric Sawtooth) on the accuracy of collision cross section (CCS) measurements using traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM). The effects of the waveform profiles on the accuracy of the CCS measurements were evaluated for four classes of compounds (lipids, peptides, steroids, and nucleosides) at different TW speeds (126-206 m/s) and amplitudes (15-89 V). For the lipids and peptides, the TWIMS-based CCS (TWCCS) deviations from the corresponding drift-tube-based CCS (DTCCS) measurements were significantly lower in experiments conducted using the Sawtooth waveform compared to the square waveform. This observation can be rationalized by the lower maximum electric field experienced by ions with a Sawtooth waveform, as compared to the other waveforms, resulting in a lower probability for significant ion heating. We also observed that given approximately comparable resolution for all four waveforms, the Sawtooth waveform resulted in lower TWCCS error and a better agreement with DTCCS values than the Square waveform. In addition, for the steroids and nucleosides, an opposite TWCCS trend was observed, with higher errors with the Sawtooth waveform and lower with the Square waveform, suggesting that these molecules tend to become slightly more compact under ion heating conditions. Under optimum conditions, all TWCCS measurements on the SLIM platform were within 0.5% of those measured in the drift tube ion mobility spectrometry.


Assuntos
Nucleosídeos , Peptídeos , Íons/química , Lipídeos , Peptídeos/análise , Esteroides
4.
Anal Chem ; 94(4): 2180-2188, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34939415

RESUMO

Ion mobility spectrometry employing structures for lossless ion manipulations (SLIM-IMS) is an attractive gas-phase separation technique due to its ability to achieve unprecedented effective ion path lengths (>1 km) and IMS resolving powers in a small footprint. The emergence of multilevel SLIM technology, where ions are transferred between vertically stacked SLIM electrode surfaces, has subsequently allowed for ultralong single-pass path lengths (>40 m) to be achieved, enabling ultrahigh resolution IMS measurements to be performed over the entire mobility range in a single experiment. Here, we report on the development of a 1 m path length miniature SLIM module (miniSLIM) based on multilevel SLIM technology. Ion trajectory simulations were used to optimize SLIM board spacings and SLIM board thicknesses, and a new method of efficiently transferring ions between SLIM levels using asymmetric traveling waves (TWs) was demonstrated. We experimentally characterized the performance of the miniSLIM IMS-MS relative to a drift tube IMS-MS using Agilent tuning mixture cations and tetraalkylammonium cations. The miniSLIM achieved a resolving power of up to 131 (CCS/ΔCCS), which is ∼1.5× higher than achievable with a 78 cm path length drift tube IMS. Additionally, the entire ion mobility range was successfully transmitted in a single separation. We also demonstrated the miniSLIM's performance as a standalone IMS system (i.e., without MS), which showed baseline separation between all AgTM cations and a clear differentiation between different charge states of a standard peptide mixture. Overall, the miniSLIM provides a compact alternative to high performance IMS instruments possessing similar path lengths.


Assuntos
Espectrometria de Mobilidade Iônica , Peptídeos , Eletrodos , Espectrometria de Mobilidade Iônica/métodos , Íons/química , Peptídeos/análise
5.
J Am Soc Mass Spectrom ; 31(9): 1803-1814, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32687705

RESUMO

Vapor assisted mobility shift measurements were made with atmospheric pressure drift-tube ion mobility-mass spectrometry (IM-MS) to determine the thermodynamic properties of weakly bound ion-molecule clusters formed from protonated phenylalanine and neutral vapor molecules with hydroxyl functional groups. Relative binding energies and gas-phase association energies of amino acid ions clustered with small organic molecules have been established previously using high-pressure mass spectrometry. However, the issue of volatility largely prohibits the use of high-pressure mass spectrometry for the determination of gas-phase associations of amino acid ions clustered with neutral vapor molecules in many instances. In contrast, ion mobility measurements can be made at atmospheric pressure with volatile vapor additives near and above their boiling points, providing access to clustering equilibria not possible using high-vacuum techniques. In this study, we report the gas-phase association energies, enthalpies, and entropies for a protonated phenylalanine ion clustered with three neutral vapor molecules: 2-propanol, 1-butanol, and 2-pentanol based upon measurements at temperatures ranging from 120 to 180 °C. The gas-phase enthalpy and entropy changes ranged between -4 to -7 kcal/mol and -3 to 6 cal/(mol K), respectively. We found enthalpically favored ion-neutral cluster reactions for phenylalanine with entropic barriers for the formation of phenylalanine-1-butanol and phenylalanine-2-pentanol cluster ions, while phenylalanine-2-propanol cluster ion formation is both enthalpically and (weakly) entropically favorable. Under the measurement conditions examined, phenylalanine-vapor modifier cluster ion formation is clearly observed via shifts in the drift time for the three test vapor molecules. In comparison, negligible shifts in mobility are observed for protonated arginine exposed to the same vapor modifiers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA